
Projecting Performance Data Over Simulation
Geometry Using SOSflow and ALPINE

Chad Wood
University of Oregon

Eugene, OR, United States
cdw@cs.uoregon.edu

Matthew Larsen
Lawrence Livermore National

Laboratory
Livermore, CA

larsen30@llnl.gov

Alfredo Gimenez
Lawrence Livermore National

Laboratory
Livermore, CA

gimenez1@llnl.gov

Cyrus Harrison
Lawrence Livermore National

Laboratory
Livermore, CA

harrison37@llnl.gov

Todd Gamblin
Lawrence Livermore National

Laboratory
Livermore, CA

gamblin2@llnl.gov

Allen Malony
University of Oregon

Eugene, OR
malony@cs.uoregon.edu

ABSTRACT
The performance of HPC simulation codes is often tied to their sim-
ulated domains; e.g., properties of the input decks, boundaries of the
underlying meshes, and parallel decomposition of the simulation
space. A variety of research efforts have demonstrated the utility
of projecting performance data onto the simulation geometry to
enable analysis of these kinds of performance problems. However,
current methods to do so are largely ad-hoc and limited in terms of
extensibility and scalability. Furthermore, few methods enable this
projection online, resulting in large storage and processing require-
ments for offline analysis. We present a general, extensible, and
scalable solution for in-situ (online) visualization of performance
data projected onto the underlying geometry of simulation codes.
Our solution employs the scalable observation system SOSflow
with the in-situ visualization framework ALPINE to automatically
extract simulation geometry and stream aggregated performance
metrics to respective locations within the geometry at runtime.
Our system decouples the resources and mechanisms to collect,
aggregate, project, and visualize the resulting data, thus mitigating
overhead and enabling online analysis at large scales. Furthermore,
our method requires minimal user input and modification of exist-
ing code, enabling general and widespread adoption.

KEYWORDS
sos, sosflow, alpine, hpc, performance, visualization, in situ

1 INTRODUCTION
Projecting application and performance data onto the scientific
domain allows for the behavior of a code to be perceived in terms of
the organization of the work it is doing, rather than the organization
of its source code. This perspective can be especially helpful [19]
for domain scientists developing aspects of a simulation primarily
for its scientific utility, though it can also be useful for any HPC
developer engaged with the general maintenance requirements of
a large and complicated codebase [18].

There have been practical challenges to providing these oppor-
tunities for insight. Extracting the spatial descriptions from an
application traditionally has relied on hand-instrumenting codes
to couple a simulation’s geometry with some explicitly defined

performance metrics. Performance tool wrappers and direct source-
instrumentation need to be configurable so that users can disable
their invasive presence during large production runs. Because it
involves changes to the source code of an application, enabling or
disabling the manual instrumentation of a code often involves full
recompilation of a software stack. Insights gained by the domain
projection are limited to what was selected a priori for contextual-
ization with geometry.

Without an efficient runtime service providing an integrated con-
text for multiple sources of performance information, it is difficult
to combine performance observations across several components
during a run. Further limiting the value of the entire exercise, per-
formance data collected outside of a runtime service must wait to
be correlated and projected over a simulation’s geometry during
post-mortem analysis. Projections that are produced offline cannot
be used for application steering, online parameter tuning, or other
runtime interactions that include a human in the feedback loop.
Scalability for offline projections also becomes a concern, as the
potentially large amount of performance data and simulation ge-
ometry produced and operated over in a massively parallel cluster
now must be integrated and rendered either from a single point or
within an entirely different allocation.

The overhead of manually instrumenting large complex codes
to extract meaningful geometries for use in performance analysis,
combined with the limited value of offline correlation of a fixed
number of metrics, naturally limited the usage of scientific domain
projections for gaining HPC workflow performance insights.

1.1 Research Contributions
This paper describes the use of SOSflow [20] and ALPINE to over-
come many prior limitations to projecting performance into the
scientific domain. The methods used to produce our results can be
implemented in other frameworks, though SOSflow and ALPINE,
discussed in detail in later sections, are generalized and intention-
ally engineered to deliver solutions of the type presented here. This
research effort achieved the following:

• Eliminate the need to manually capture geometry for per-
formance data projections of ALPINE-enabled workflows



VPA’17, November 2017, Denver, CO C. Wood et al.

• Provide online observation of performance data projected
over evolving geometries and metrics

• Facilitate interactive selection of one or many performance
metrics and rendering parameters, adding dynamism to pro-
jections

• Enable simultaneous online projections from a common data
source

• In situ performance visualization architecture supporting
both current and future-scale systems

2 RELATEDWORK
Husain and Gimenez’s work on Mitos [7] and MemAxes [6] is
motivated similarly to ours. Mitos provides an integration API
for combining information from multiple sources into a coherent
memoized set for analysis and visualization, and MemAxes projects
correlated information across domains to explore the origins of
observed performance. SOSflow is being used in our research as an
integration API, but takes a different optimization path by providing
a general-purpose in situ (online) runtime.

Caliper by Boehme et al. [3] extracts performance data during
execution in ways that serve a variety of uses, in much the same
way our efforts here are oriented. Caliper’s flexible data aggrega-
tion [4] model can be used to filter metrics in situ, allowing for
tractable volumes of performance data to be made available for pro-
jections. Both ALPINE and Caliper provide direct services to users,
also serving as integration points for user-configurable services at
run time. Caliper is capable of deep introspection on the behavior
of a program in execution, yet is able to be easily disabled for pro-
duction runs that require no introspection and want to minimize
instrumentation overhead. ALPINE allows for visualization filters
to be compiled separately from a user’s application and then intro-
duced into, or removed from, an HPC code’s visualization pipeline
with a simple edit to that workflow’s ALPINE configuration file.
More tools like Caliper and ALPINE, featuring well-defined integra-
tion points, are essential for the wider availability of cross-domain
performance understanding. SOSflow does not collect source-level
performance metrics directly, but rather brings that data from tools
like Caliper into a holistic online context with information from
other libraries, performance tools, and perspectives.

BoxFish [8] also demonstrated the value of visualizing projec-
tions when interpreting performance data, adding a useful hierar-
chical data model for combining visualizations and interacting with
data.

SOSflow’s flexible model for multi-source online data collection
and analysis provides performance exploration opportunities using
both new and existing HPC tools.

3 SOSFLOW
SOSflow provides a lightweight, scalable, and programmable frame-
work for observation, introspection, feedback, and control of HPC
applications. The Scalable Observation System (SOS) performance
model used by SOSflow allows a broad set of in situ (online) capabil-
ities including remote method invocation, data analysis, and visual-
ization. SOSflow can couple together multiple sources of data, such
as application components and operating environment measures,

with multiple software libraries and performance tools. These fea-
tures combined to efficiently create holistic views of workflow per-
formance at runtime, uniting node-local and distributed resources
and perspectives. SOSflow can be used for a variety of purposes:

• Aggregation of application and performance data at runtime
• Providing holistic view of multi-component distributed sci-
entific workflows

• Coordinating in situ operations with global analytics
• Synthesizing application and system metrics with scientific
data for deeper performance understanding

• Extending the functionality of existing HPC codes using in
situ resources

• Resource management, load balancing, online performance
tuning, etc.

To better understand the role played by SOSflow, it is useful to
examine its architecture. SOSflow is composed of four major com-
ponents:

• sosd : Daemons
• libsos : Client Library
• pub/sql : Data
• sosa : Analytics & Feedback

These components work together to provide extensive runtime ca-
pabilities to developers, administrators, and application end-users.
SOSflow runs within a user’s allocation, and does not require ele-
vated privileges for any of its features.

3.1 SOSflow Daemons
Online functionality of SOSflow is enabled by the presence of a
user-space daemon. This daemon operates completely indepen-
dently from any applications, and does not connect into or utilize
any application data channels for SOSflow communications. The
SOSflow daemons are launched from within a job script, before
the user’s applications are initialized. These daemons discover and
communicate amongst each other across node boundaries within a
user’s allocation. When crossing node boundaries, SOSflow uses
the machine’s high-speed communication fabric. Inter-node com-
munication may use either MPI or EVPath as needed, allowing
for flexibility when configuring its deployment to various HPC
environments.

The traditional deployment of SOSflow will have a single dae-
mon instance running in situ for each node that a user’s appli-
cations will be executing on. This daemon is called the listener.
Additional resources can be allocated in support of the SOSflow
runtime as-needed to support scaling and to minimize perturba-
tion of application performance. One or more nodes are usually
added to the user’s allocation to host SOSflow aggregator daemons
that combine the information that is being collected from the in
situ daemons. These aggregator daemons are useful for providing
holistic unified views at runtime, especially in service to online
analytics modules. Because they have more work to do than the in
situ listener daemons, and also are a useful place to host analytics
modules, it is advisable to place aggregation targets on their own
dedicated node[s], co-located with online analytics codes.

3.1.1 In Situ. Data coming from SOSflow clients moves into the
in situ daemon across a light-weight local socket connection. Any



Projecting Performance Data Over Simulation Geometry Using SOSflow and ALPINE VPA’17, November 2017, Denver, CO

Figure 1: SOSflow’s lightweight daemon runs on each node.

software that connects in to the SOSflow runtime can be thought
of as a client. Clients connect only to the daemon that is running
on their same node. No client connections are made across node
boundaries, and no special permissions are required to use SOSflow,
as the system considers the SOSflow runtime to be merely another
part of a user’s workflow.

The in situ listener daemon offers the complete functionality
of the SOSflow runtime, including online query and delivery of
results, feedback, or application steering messages. At startup, the
daemon creates an in-memory data store with a file-based mirror
in a user-defined location. Listeners asynchronously store all data
that they receive into this store. The file-based mirror is ideal for
offline analysis and archival. The local data store can be queried
and updated via the SOSflow API, with all information moving
over the daemon’s socket, avoiding dependence on filesystem syn-
chronization or centralized metadata services. Providing the full
spectrum of data collected on node to clients and analytics modules
on node allows for distributed online analytics processing. Analyt-
ics modules running in situ can observe a manageable data set, and
then exchange small intermediate results amongst themselves in
order to compute a final global view. SOSflow also supports running
analytics at the aggregation points for direct query and analysis
of global or enclave data, though it is potentially less scalable to
perform centrally than in a distributed fashion, depending on the
amount of data being processed by the system.

SOSflow’s internal data processing utilizes unbounded asyn-
chronous queues for all messaging, aggregation, and data storage.
Pervasive design around asynchronous data movement allows for
the SOSflow runtime to efficiently handle requests from clients and
messaging between off-node daemons without incurring synchro-
nization delays. Asynchronous in situ design allows the SOSflow
runtime to scale out beyond the practical limits imposed by globally
synchronous data movement patterns.

3.1.2 Aggregation Targets. A global perspective on application
and system performance is often useful. SOSflow automatically
migrates information it is given into one or more aggregation tar-
gets. This movement of information is transparent to users of SOS,
requiring no additional work on their part. Aggregation targets
are fully-functional instances of the SOSflow daemon, except that
their principle data sources are distributed listener daemons rather
than node-local clients. The aggregated data contains identical in-
formation as the in situ data stores, it just has more of it, and it is
assembled into one location. The aggregate daemons are useful for
performing online analysis or information visualization that needs
to include information from multiple nodes.

Figure 2: Co-located aggregation, analysis, and visualiza-
tion.

SOSflow is not a publish-subscribe system in the traditional
sense, but uses a more scalable push-and-pull model. Everything
sent into the system will automatically migrate to aggregation
points unless it is explicitly tagged as being node-only. Requests for
information from SOSflow are ad hoc and the scope of the request
is constrained by the location where the request is targeted: in situ
queries are resolved against the in situ database, aggregate queries
are resolved against the aggregate database. If tagged node-only
information is potentially useful for offline analysis or archival,
the in situ data stores can be collected at the end of a job script,
and their contents can be filtered for that node-only information,
which can be simply concatenated together with the aggregate
database[s] into a complete image of all data. Each value published
to SOSflow is tagged with a globally unique identifier (GUID). This
allows SOSflow data from multiple sources to be mixed together
while preserving its provenance and preventing data duplication
or namespace collision.

3.2 SOSflow Client Library
Clients can directly interface with the SOSflow runtime system by
calling a library of functions (libsos) through a standardized API.



VPA’17, November 2017, Denver, CO C. Wood et al.

Applications can also transparently become clients of SOS by uti-
lizing libraries and performance tools which interact with SOSflow
on their behalf. All communication between the SOSflow library
and daemon are transparent to users. Users do not need to write
any socket code or introduce any state or additional complexity to
their own code.

Information sent through the libsos API is copied into internal
data structures, and can be freed or destroyed by the user after
the SOSflow API function returns. Data provided to the API is
published up to the in situ daemonwith an explicit API call, allowing
developers to control the frequency of interactions with the runtime
environment. It also allows the user to register callback functions
that can be triggered and provided data by user-defined analytics
function, creating an end-to-end system for both monitoring as
well as feedback and control.

To maximize compatibility with extant HPC applications, the
SOSflow client library is currently implemented in C99. The use of
C99 allows the library to be linked in with a wide variety of HPC
application codes, performance tools, and operating environments.
There are various custom object types employed by the SOSflow
API, and these custom types can add a layer of complexity when
binding the full API to a language other than C or C++. SOSflow
provides a solution to this challenge by offering a "Simple SOS"
(ssos) wrapper around the full client library, exposing an API that
uses no custom types. The ssos wrapper was used to build a native
Python module for SOSflow. Users can directly interact with the
SOSflow runtime environment from within Python scripts, acting
both as a source for data, and also a consumer of online query
results. HPC developers can capitalize on the ease of development
provided by Python, using SOSflow to observe and react online
to information from complex legacy applications and data models
without requiring that those applications be redesigned to internally
support online interactivity.

3.3 SOSflow Data
The primary concept around which SOSflow organizes information
is the "publication handle" (pub). Pubs provide a private namespace
where many types and quantities of information can be stored as a
key/value pair. SOSflow automatically annotates values with a vari-
ety of metadata, including a GUID, timestamps, origin application,
node id, etc. This metadata is available in the persistent data store
for online query and analysis. SOSflow’s metadata is useful for a
variety of purposes:

• Performance analysis
• Provenance of captured values for detection of source-specific
patterns of behavior, failing hardware, etc.

• Interpolating values contributed from multiple source appli-
cations or nodes

• Re-examining data after it has been gathered, but organizing
the data by metrics other than those originally used when it
was gathered

The full history of a value, including updates to that value, is
maintained in the daemon’s persistent data store. This allows for the
changing state of an application or its environment to be explored
at arbitrary points in its evolution. When a key is re-used to store
some new information that has not yet been transmitted to the in

Figure 3: SOSflow retains the full history of every value.

situ daemon, the client library enqueues it up as a snapshot of that
value, preserving all associated metadata alongside the historical
value. The next time the client publishes to the daemon, current
new values and all enqueued historical values are transmitted.

SOSflow is built on a model of a global information space. Ag-
gregate data stores are guaranteed to provide eventual consistency
with the data stores of the in situ daemons that are targeting them.
SOSflow’s use of continuous but asynchronous movement of in-
formation through the runtime system does not allow for strict
quality-of-service guarantees about the timeliness of information
being available for analysis. This design constraint reflects the re-
ality of future-scale HPC architectures and the need to eliminate
dependence on synchronous behavior to correlate context. SOS-
flow conserves contextual metadata when values are added inside
the client library. This metadata is used during aggregation and
query resolution to compose the asynchronously-transported data
according to its original synchronous creation. The vicissitudes of
asynchronous data migration strategies at scale become entirely
transparent to the user.

SOSflow does not require the use of a domain-specific language
when pushing values into its API. Pubs are self-defining through
use: When a new key is used to pack a value into a pub, the schema
is automatically updated to reflect the name and the type of that
value. When the schema of a pub changes, the changes are auto-
matically announced to the in situ daemon the next time the client
publishes data to it. Once processed and injected into SOSflow’s
data store, values and their metadata are accessible via standardized
SQL queries. SOSflow’s online resolution of SQL queries provides
a high-degree of programmability and online adaptivity to users.
SQL views are built into the data store that mask off the internal
schemas and provide results organized intuitively for grouping by
application rank, node, time series, etc.

SOSflow uses the ALPINE in situ visualization infrastructure
described below to collect simulation geometry that it correlates
with performance data.

4 ALPINE ASCENT
ALPINE is a project that aims to build an in situ visualization in-
frastructure and analysis targeting leading edge supercomputers.



Projecting Performance Data Over Simulation Geometry Using SOSflow and ALPINE VPA’17, November 2017, Denver, CO

ALPINE is part of the U.S. Department of Energy’s Exascale Com-
puting Project (ECP) [15], and the ALPINE effort is supported by
multiple institutions. The goal of ALPINE is two fold. First, cre-
ate a hybrid-parallel library (i.e., both distributed-memory and
shared-memory parallel) that can be included in other visualization
tools such as ParaView [2] and VisIt [5] thus creating an ecosys-
tem where new hybrid-parallel algorithms are easily deployed into
downstream tools. Second, create a flyweight in situ infrastructure
that directly leverages the hybrid-parallel library. In this work, we
directly interface with the ALPINE in situ infrastructure called
Ascent [12].

Ascent is the descendant of Strawman [13], and Ascent is tightly-
coupled with simulations, i.e. it shares the same node resources
as the simulation. While Strawman’s goal was to bootstrap in situ
visualization research, the ALPINE Ascent in situ infrastructure
is intended for production. Ascent includes include three physics
proxy-applications out of the box to immediately provide the in-
frastructure and algorithms a representative set of mesh data to
consume. Ascent is already integrated into several physics simu-
lations to perform traditional visualization and analysis, and we
chose to embed an SOSflow client into Ascent to eliminate the need
for additional manual integration of SOSflowwith Ascent-equipped
simulations. Ascent uses the Conduit [10] data exchange library to
marshal mesh data from simulations into Ascent. Conduit provides
a flexible hierarchical model for describing mesh data, using a sim-
ple set of conventions for describing meshes including structured,
unstructured, and higher order element meshes [11]. Once the sim-
ulation describes the mesh data, it publishes the data into Ascent
for visualization purposes. Ascent relays the mesh data to SOSflow
in the manner described below. In addition to the mesh data, we can
easily add performance data that is associated with each MPI rank.
Coupling the performance data with the mesh geometry provides
a natural way to generate an aggregate data set to visualize the
performance data mapped to the spatial region each MPI rank is
responsible for.

Ascent includes Flow, a simple dataflow library based on the
Python dataflow library within VisIt, to control the execution of
visualization filters. The input to Flow is the simulation mesh data,
and Ascent adds visualization filters (e.g., contours and threshold-
ing) to create visualizations. Everything within Flow is a filter that
can have multiple inputs and a single output of generic types. The
flexibility of Flow allows for user defined filters, compiled outside
of Ascent, to be easily inserted into the dataflow, and when the
dataflow network executes, custom filters have access to all of the
simulation mesh data published to Ascent. We leverage the flexibil-
ity of Flow to create an SOSflow filter that is inserted at runtime.
The SOSflow filter uses the data published by the simulation to
extract the spatial extents being operated over by each MPI rank
along, with any performance data provided. Next, we publish that
data to SOSflow, and then Ascent’s visualization filters execute as
usual.

5 EXPERIMENTS
5.1 Evaluation Platform
All results were obtained by running online queries against the
SOSflow runtime’s aggregation targets (Figure 2) using SOSflow’s

built-in Python API. The results of these queries were used to create
Vtk [17] geometry files. These files were used as input for the VisIt
visualization tool, which we invoked from within the allocation to
interactively explore the performance projections.

5.2 Experiment Setup
The experiments performed had the following purposes:

• Validation : Demonstrate the coupling of SOSflow with
ALPINE and its ability to extract geometry from simulations
transparently.

• Introspection : Examine the overhead incurred by includ-
ing the SOSflow geometry extraction filter in an ALPINE
Ascent visualization pipeline.

ALPINE’s Ascent library was used to build a filter module outfit-
ted with SOSflow, and this filter was used for online geometry
extraction. ALPINE’s JSON configuration file describing the con-
nectivity of the in situ visualization pipeline was modified to insert
the SOSflow-equipped geometry extraction filter. The SOSflow im-

Figure 4: SOSflow collects runtime information to project
over the simulation geometry.

plementation used to conduct these experiments is general-purpose
and was not tailored to the specific deployment environment or the
simulations observed. The study was conducted on two machines,
the details of which are included here —

(1) Quartz : A 2,634-node Penguin supercomputer at Lawrence
Livermore National Laboratory (LLNL). Intel Xeon E5-2695
processors provide 36 cores/node. Each node offers 128 GB
of memory and nodes are connected via Intel OmniPath.

(2) Catalyst : A Cray CS300 supercomputer at LLNL. Each of
the 324 nodes is outfitted with 128 GB of memory and 2x
Intel Xeon E5-2695v2 2.40 GHz 12-core CPUs. Catalyst nodes
transport data to each other using a QLogic InfiniBand QDR
interconnect.



VPA’17, November 2017, Denver, CO C. Wood et al.

The following simulated workflows were used —
(1) KRIPKE [9] : A 3D deterministic neutron transport proxy

application that implements a distributed-memory parallel
sweep solver over a rectilinearmesh. At any given simulation
cycle, there are simultaneous sweeps along a set of discrete
directions to calculate angular fluxes. This results in a MPI
communication pattern where ranks receive asynchronous
requests from other ranks for each discrete direction.

(2) LULESH [1] : A 3D Lagrangian shock hydrodynamics proxy
application that models Sedov blast test problem over a curvi-
linear mesh. As the simulation progresses, hexahedral ele-
ments deform to more accurately capture the problem state.

5.3 Overview of Processing Steps
The SOSflow runtime provided a modular filter for the ALPINE in
situ visualization framework. This filter was enabled for the sim-
ulation workflow at runtime to allow for the capture of evolving
geometric details as the simulation progressed. The SOSflow run-
time daemon automatically contextualized the geometry it received
alongside the changing application performance metrics. SOSflow’s
API for Python was used to extract both geometry information and
correlated performance metrics from the SOSflow runtime. This
data set was used to generate sequences of input files to the VisIt
scientific data visualization tool corresponding to the cycle of a the
distributed simulation.

Each input file contained the geometric extents of every simu-
lation rank, the portion of the simulated space that each part of
the application was working within. Alongside that volumetric de-
scriptions for that cycle, SOSflow integrated attribute dictionaries
of all plottable numeric values it was provided during that cycle,
grouped by simulation rank. Performance metrics could then be in-
teractively selected and combined in VisIt with customizable plots,
presenting an application rank’s state and activity incident to its
simulation effort, projected over the relevant spatial extent.

5.4 Evaluation of Geometry Extraction
Our experiments were validated by comparing aggregated data to
data manually captured at the source during test runs. Further-
more, geometry aggregated by ALPINE’s Ascent SOSflow filter was
rendered and visually compared with other visualizations of the
simulation. Projections were inspected to observe the simulation’s
expected deforming of geometry (LULESH) or algorithm-dependent
workload imbalances (KRIPKE). Performance metrics can be cor-
related in SQL queries to the correct geometric regions by various
redundant means such as pub handle GUID, origin PID or MPI
rank, simulation cycle, host node name, SOSflow publish frame,
and value creation timestamps. Aggregated performance metrics
projected over the simulation regions were compared to metrics
reported locally, and required to be identical for each region and
simulation cycle.

5.5 Evaluation of Overhead
Millisecond-resolution timers were added to the per-cycle execute
method of the SOSflow Alpine geometry extraction filter. Each
rank tracked the amount of time it spent extracting its geometry,
packing the geometry into an SOSflow pub handle, and transmitting

it to the runtime daemon. Every cycle’s individual time cost was
computed and transmitted to SOSflow, as well as a running total of
the time that Alpine had spent in the SOSflow filter. From a region
outside the timers, the timer values were packed into the same
SOSflow publication handle used for the geometric data. Timer
values were transmitted at the end of the following cycle, alongside
that cycle’s geometry. The additional transmission cost of these two
timer values once per simulation cycle had no perceivable impact
on the performance they were measuring.

6 RESULTS
Geometry was successfully extracted (Figures 5, 6, 7, and 8) with
minimal overhead from simulations run at a variety of scales from
2 to 33 nodes. The side-by-side introspection of the behavior of

Figure 5: Loops (left) andmaximumbacklog (right) fromone
cycle of 512 KRIPKE ranks distributed to 32 nodes.

KRIPKE (Figure 5) are a good example of the value this system
provides to developers. The amount of work loops and the backlog
of requests for computation are correlated negatively, with ranks
operating in the center of the simulation space getting through
less loops of work per cycle, since they are required to service data
requests in more directions than the ranks simulating the corners
regions. The directionality of energy waves moving through he
simulated space can also be observed, with more work piling up
where multiple waves are converging. A developer can quickly
assess the behavior of their distributed algorithm by checking for
hot-spots and workload imbalances in the space being simulated.

6.1 Geometry Extraction and Performance
Data Projection

Aggregated simulation geometry was a precise match with the
geometry manually recorded within applications, across all runs.
After aggregation and performance data projection, geometry from
all simulation ranks combined to create a contiguous space without
gaps or overlapping regions, representative of the simulated space
subdivided by MPI rank.

6.2 Overhead
The inclusion of the ALPINE Ascent filter module for SOSflow had
no observable impact on overall application execution time, being
significantly less than variance observed between experimental
runs both with and without the filter. The filter module is executed



Projecting Performance Data Over Simulation Geometry Using SOSflow and ALPINE VPA’17, November 2017, Denver, CO

at the end of each simulation cycle, from the first iteration through
to the simulation conclusion. Manual instrumentation was added
to the SOSflow filter to measure the time spent inside the filter’s
execute method, where all simulation geometry and performance
metrics were gathered for our study.

When gathering only the simulation geometry, filter execution
never exceeded 2ms per simulation cycle. We collected performance
information for our projections by reading from the /proc/[pid] files
of each rank. These readings were made from within the SOSflow
filter, and published to SOSflow alongside the collected geometry.
Collecting 31 system metrics and application counters added ad-
ditional overhead, but the filter time but did not exceed 4ms for
any of the projections shown in this paper. The filter’s execution
time was logged as a performance metric alongside the other in
situ performance data, and is visualized for LULESH in Figure 7.

7 CONCLUSION
Services from both SOSflow and ALPINE were successfully inte-
grated to provide a scalable in situ (online) geometry extraction
and performance data projection capability.

7.1 Future Work
Workflows that use the ALPINE framework but have complex ir-
regular meshes, feature overlapping "halo regions", or that operate
over non-continuous regions of space within a single process, may
require additional effort to extract geometry from, depending on
the organization of spatial descriptions they employ. ALPINE uses
the Vtk-m [16] library for its operations over simulation mesh
data. The addition of a general convex hull algorithm to Vtk-m
will simplify the task of uniformly describing any spatial extent[s]
being operated on by a process using ALPINE for its visualization
pipeline.

The VisIt UI can be extended to support additional interactiv-
ity with the SOSflow runtime. UI elements to submit custom SQL
queries to SOSflow would enhance the online data exploration util-
ity of VisIt. SOSflow’s interactive code steering mechanisms allow
for feedback messages and payloads to be delivered to subscribing
applications at runtime. With some basic additions to the VisIt UI,
these mechanisms could be triggered by a VisIt user based on what
they observe in the performance projections, sending feedback to
targeted workflow components from within the VisIt UI.

While the geometry capture and performance data projection in
this initial work has a scalable in situ design, the final rendering of
the performance data into an image takes place on a single node.
Future iterations of this performance visualizationworkwill explore
the use of in situ visualization techniques currently employed to

Figure 6: Cumulative user CPU ticks during 440 cycles of 512
KRIPKE ranks on 32 nodes.

Figure 7: Filter execution (1-4ms) over 710 LULESH cycles.

render scientific data from simulations [14]. These emerging in situ
rendering technologies will allow for live views of performance
data projected over simulation geometry at the furthest extreme
scales to which our simulations are being pressed.

ACKNOWLEDGMENTS
The research report was supported by a grant (DE-SC0012381) from
the Department of Energy, Scientific Data Management, Analytics,
and Visualization (SDMAV), for “Performance Understanding and
Analysis for Exascale Data Management Workflows.”

Part of this work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344 (LLNL-CONF-737874).

REFERENCES
[1] [n. d.]. Hydrodynamics Challenge Problem, Lawrence Livermore National Labora-

tory. Technical Report LLNL-TR-490254. 1–17 pages.
[2] James Ahrens, Berk Geveci, and Charles Law. 2005. Paraview: An end-user tool

for large data visualization. The Visualization Handbook 717 (2005).
[3] David Boehme, Todd Gamblin, David Beckingsale, Peer-Timo Bremer, Alfredo

Gimenez, Matthew LeGendre, Olga Pearce, and Martin Schulz. 2016. Caliper:
performance introspection for HPC software stacks. In High Performance Com-
puting, Networking, Storage and Analysis, SC16: International Conference for. IEEE,
550–560.

[4] David Böhme, David Beckingsdale, and Martin Schulz. 2017. Flexible Data
Aggregation for Performance Profiling. IEEE Cluster (2017).

[5] Hank Childs, Eric Brugger, Brad Whitlock, Jeremy Meredith, Sean Ahern, David
Pugmire, Kathleen Biagas, Mark Miller, Cyrus Harrison, Gunther H. Weber,
Hari Krishnan, Thomas Fogal, Allen Sanderson, Christoph Garth, E. Wes Bethel,
David Camp, Oliver Rübel, Marc Durant, Jean M. Favre, and Paul Navrátil. 2012.
VisIt: An End-User Tool For Visualizing and Analyzing Very Large Data. In
High Performance Visualization—Enabling Extreme-Scale Scientific Insight. CRC
Press/Francis–Taylor Group, 357–372.

[6] Adolfo Alfredo Gimenez, Todd Gamblin, Ilir Jusufi, Abhinav Bhatele, Martin
Schulz, Peer-Timo Bremer, and Bernd Hamann. 2017. MemAxes: Visualization
and Analytics for Characterizing Complex Memory Performance Behaviors. IEEE
Transactions on Visualization and Computer Graphics (2017).

[7] Benafsh Husain, Alfredo Giménez, Joshua A Levine, Todd Gamblin, and Peer-
Timo Bremer. 2015. Relating memory performance data to application domain
data using an integration API. In Proceedings of the 2nd Workshop on Visual
Performance Analysis. ACM, 5.

[8] Katherine E Isaacs, Aaditya G Landge, Todd Gamblin, Peer-Timo Bremer, Valerio
Pascucci, and Bernd Hamann. 2012. Exploring performance data with boxfish. In
High Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC
Companion:. IEEE, 1380–1381.

[9] AJ Kunen, TS Bailey, and PN Brown. 2015. KRIPKE-a massively parallel transport
mini-app. Technical Report. Lawrence Livermore National Laboratory (LLNL),
Livermore, CA.

[10] Lawrence Livermore National Laboratory. 2017. Conduit: Simplified Data Ex-
change for HPC Simulations. (2017). https://software.llnl.gov/conduit/

[11] Lawrence Livermore National Laboratory. 2017. Conduit: Simplified Data Ex-
change for HPC Simulations - Conduit Blueprint. (2017). https://software.llnl.
gov/conduit/blueprint.html

[12] Matthew Larsen, James Aherns, Utkarsh Ayachit, Eric Brugger, Hank Childs, Berk
Geveci, and Cyrus Harrison. 2017. The ALPINE In Situ Infrastructure: Ascending
from the Ashes of Strawman. In Proceedings of the In Situ Infrastructures for
Enabling Extreme-Scale Analysis and Visualization Workshop (ISAV2017). ACM,
New York, NY, USA.

https://software.llnl.gov/conduit/
https://software.llnl.gov/conduit/blueprint.html
https://software.llnl.gov/conduit/blueprint.html


VPA’17, November 2017, Denver, CO C. Wood et al.

Figure 8: Many metrics can be projected from one run. Here we see (top to bottom) user CPU ticks, system CPU ticks, and
bytes read during 710 cycles of 512 LULESH ranks distributed across 32 nodes.

[13] Matthew Larsen, Eric Brugger, Hank Childs, Jim Eliot, Kevin Griffin, and Cyrus
Harrison. 2015. Strawman: A Batch In Situ Visualization and Analysis Infras-
tructure for Multi-Physics Simulation Codes. In Proceedings of the First Workshop
on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization
(ISAV2015). ACM, New York, NY, USA, 30–35. https://doi.org/10.1145/2828612.
2828625

[14] Matthew Larsen, Cyrus Harrison, James Kress, David Pugmire, Jeremy SMeredith,
and Hank Childs. 2016. Performance modeling of in situ rendering. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE Press, 24.

[15] Paul Messina. 2017. The Exascale Computing Project. Computing in Science &
Engineering 19, 3 (2017), 63–67.

[16] Kenneth Moreland, Christopher Sewell, William Usher, Li-ta Lo, JeremyMeredith,
David Pugmire, James Kress, Hendrik Schroots, Kwan-Liu Ma, Hank Childs,
et al. 2016. Vtk-m: Accelerating the visualization toolkit for massively threaded
architectures. IEEE computer graphics and applications 36, 3 (2016), 48–58.

[17] Will J Schroeder, Bill Lorensen, and Ken Martin. 2004. The visualization toolkit:
an object-oriented approach to 3D graphics. Kitware.

[18] Martin Schulz, Abhinav Bhatele, David Böhme, Peer-Timo Bremer, Todd Gamblin,
Alfredo Gimenez, and Kate Isaacs. 2015. A Flexible Data Model to Support Multi-
domain Performance Analysis. In Tools for High Performance Computing 2014.
Springer, 211–229.

[19] Martin Schulz, Joshua A Levine, Peer-Timo Bremer, Todd Gamblin, and Valerio
Pascucci. 2011. Interpreting performance data across intuitive domains. In Parallel
Processing (ICPP), 2011 International Conference on. IEEE, 206–215.

[20] Chad Wood, Sudhanshu Sane, Daniel Ellsworth, Alfredo Gimenez, Kevin Huck,
Todd Gamblin, and Allen Malony. 2016. A scalable observation system for
introspection and in situ analytics. In Proceedings of the 5th Workshop on Extreme-
Scale Programming Tools. IEEE Press, 42–49.

https://doi.org/10.1145/2828612.2828625
https://doi.org/10.1145/2828612.2828625

	Abstract
	1 Introduction
	1.1 Research Contributions

	2 Related Work
	3 SOSflow
	3.1 SOSflow Daemons
	3.2 SOSflow Client Library
	3.3 SOSflow Data

	4 ALPINE Ascent
	5 Experiments
	5.1 Evaluation Platform
	5.2 Experiment Setup
	5.3 Overview of Processing Steps
	5.4 Evaluation of Geometry Extraction
	5.5 Evaluation of Overhead

	6 Results
	6.1 Geometry Extraction and Performance Data Projection
	6.2 Overhead

	7 Conclusion
	7.1 Future Work

	Acknowledgments
	References

