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ABSTRACT

Adaptive MPI (AMP]) is an advanced MPI runtime environment
that offers several features over traditional MPI runtimes, which
can lead to a better utilization of the underlying hardware platform
and therefore higher performance. These features are overdecompo-
sition through virtualization, and load balancing via rank migration.
Choosing which of these features to use, and finding the optimal
parameters for them is a challenging task however, since different
applications and systems may require different options. Further-
more, there is a lack of information about the impact of each option.
In this paper, we present a new visualization of AMPI in its com-
panion Projections tool, which depicts the operation of an MPI
application and details the impact of the different AMPI features
on its resource usage. We show how these visualizations can help
to improve the efficiency and execution time of an MPI application.
Applying optimizations indicated by the performance analysis to
two MPI-based applications results in performance improvements
of up 18% from overdecomposition and load balancing.

CCS CONCEPTS

+ Human-centered computing — Visualization systems and
tools; « Software and its engineering — Scheduling; Multi-
threading; Message passing;

KEYWORDS
MP], Load balancing, AMPI, Migration, Overdecomposition

1 INTRODUCTION

Improving the performance of parallel applications that are based
on the MPI programming model is an important aspect of High-
Performance Computing. Compared to traditional MPI runtimes,
Adaptive MPI (AMPI) [6] offers several advanced, unique features,
the most important of which are: overdecomposition through virtu-
alization and load balancing through rank migration. These features
can be used to improve performance portability of MPI-based appli-
cations. AMPT itself is implemented on top of the Charm++ runtime
system [1, 10] and makes use of several of its features, including
support for migration of threads, comprehensive scheduling and
load balancing frameworks, and optimized communication within
and between cluster nodes.

The key difference between AMPI and most other MPI implemen-
tations is that AMPI virtualizes ranks as lightweight, migratable
user-level threads (instead of operating system processes). The
Charm++ runtime system can schedule multiple virtual ranks per
core based on message delivery, to overlap communication and
computation and to enable a more fine-grained decomposition of
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work. This overdecomposition can also help with cache and NUMA
locality, since smaller subdomains of a problem might fit more
easily into caches.

The AMPI runtime also provides support for migrating ranks
between address spaces at runtime, both within a cluster node and
between separate nodes. This feature can be used for the purposes of
load balancing or fault tolerance, among others. Charm++ contains
many different load balancing strategies that can be selected by
the user or automatically [18], resulting in substantial performance
gains for many parallel applications [4, 9].

These load balancing strategies are based on actual measurement
of load information at runtime, and on migrating computations
from heavily loaded to lightly loaded Processing Elements (PEs,
Charm++’s terminology for OS processes). Figures 1 and 2 illustrate
overdecomposition and rank migration in AMPI. The only changes
necessary to existing MPI applications to run them on AMPI with
virtualization and migration are related to privatizing global and
static variables to AMPI’s user-level threads [6]. All AMPI programs
are valid MPI programs, besides any calls they might contain to
AMPT’s several extension APIs.

Using AMPT’s high-level features efficiently is not straightfor-
ward, however. Users of MPI applications running on AMPI need
to determine whether an application can benefit from each feature,
as well as the optimal configuration (such as degree of overdecom-
position and load balancing frequency) of each feature. Previously,
the impact of these features could only be observed indirectly, by
running an application with various parameters and observing
its execution time. It was therefore difficult to determine the best
configuration without extensive experiments, to understand appli-
cation performance, as well as to explain the reasons for possible
performance gains.

In this paper, we present the additions to AMPI and Projections
that enable detailed performance analysis of applications running

PE Virtual rank PE
’_/H
—_—
41516 |7
0l1]2]3

No overdecomposition 4x overdecomposition

Figure 1: Overdecomposition in AMPIL Colors indicate dif-
ferent PEs. The working set of a virtual rank in the no overde-
composition case might not fit into the cache, but it might fit
in the 4x overdecomposition case.
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Figure 2: Rank migration in AMPI. Colors indicate different
PEs. Rank 13 is migrating from one PE to another.

on AMPI, covering both normal MPI operations as well as AMPI’s
additions to the standard. With these additions, it is possible to
better understand the operation of an MPI-based application and its
performance characteristics. Our tool can point out possible ineffi-
ciencies, their solutions, and can be used to evaluate and compare
performance improvements.

In the second part of the paper (Section 3), we show how the infor-
mation provided by AMPI and Projections can be used to optimize
the performance of two MPI-based applications, LULESH [11, 12]
and PIC from the Intel Parallel Research Kernel suite [22]. Our
results show that the performance analysis with the help of our
additions to AMPI/Projections enabled us to achieve performance
improvements of up to 18% from overdecomposition and load bal-
ancing. Furthermore, we show that performance gains are highly
dependent on the characteristics of the application, such that differ-
ent applications require using different AMPI features with different
parameters.

2 VISUALIZING AMPI WITH PROJECTIONS

This section briefly discusses how the operation of an MPI ap-
plication running on top of AMPI is traced for visualization, and
presents the main visualizations available to the application user
in the Projections tool.

2.1 Implementation

Tracing and trace visualization in Charm++ and Projections is built
around storing trace events in log files. Prior to version 6.8.0 of
Charm++/AMPI, no special support for AMPI events was available,
such that only events related to Charm++ were traced.

2.1.1  AMPI. In order to implement tracing of events in AMPI,
we extended the support for bracketed events in the tracing frame-
work in Charm++. Bracketed events are events that have a duration,
that is, a starting time and end time. For every AMPI API function
(standard MPI functions as well as AMPI extensions), an object
is created on the stack as the first operation of that function. As
part of the object’s constructor, a time stamp of the function entry
is stored. On function exit, this object is destroyed automatically,
calculating the total time spent in the function and storing informa-
tion about this event in the trace file. Information stored includes
the event ID, function name, PE, virtual rank, and duration of the
event. Previously, traces of AMPI programs only showed what task
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the AMPI implementation was executing at a given time on each
core, providing no insight into what each virtual rank on a core was
executing. Now, users can see what each virtual rank was doing at
any given time.

Such an implementation via a stack-allocated object simplifies
the support in AMPI, as well as seamlessly supporting nested events.
The tracing framework itself is not limited to MPI, a user appli-
cation can register and trace their own events in addition to the
MPI functions. Furthermore, an application can also request more
fine-grained traces by dynamically enabling and disabling tracing
at runtime, via the AMPI_Trace_begin() and AMPI_Trace_end()
functions.

Enabling tracing in Charm++ and AMPI applications has gen-
erally a negligible execution time overhead. For the applications
discussed in this paper, the measured overhead was typically less
than 3% of the total execution time. Trace files are kept in memory
and are flushed to disk periodically and at the end of execution in a
compressed format.

2.1.2  Projections. The Projections tool reads and evaluates the
trace files after the execution of a Charm++ or AMPI application. We
extended it with support for displaying virtual ranks for bracketed
events, such that a user can see which rank has executed which
MPI function. Furthermore, support was added to determine when
and where virtual ranks are migrated, by showing the virtual rank
numbers for traced events. As in Charm++ traces, MPI functions
are grouped by color, such that it is easy to follow the operation of
collective functions.

2.2 Visualizations

In the example in this section, we use an MPI application running
on four Processing Elements (PEs) and eight virtual ranks (VPs) to
illustrate the visualizations. Figure 3 depicts the visualization before
the extensions described in this paper were applied, as presented
in the original AMPI paper [6]. In the figure, a user can see that the
application is running on four PEs and the percentage of time this
PE was busy (that is, not blocked while waiting for communication,
for example). This percentage is shown below each PE (left number
in the parentheses). Furthermore, the figure illustrates at which
times each PE was idle (in white) and busy (in red). Not presented
in this figure are the virtual ranks of the application, and which
operations they are performing.

Figures 4 and 5 depict the visualizations with the changes de-
scribed in this paper. In addition to the information presented be-
fore, now the virtual ranks and the PE they are executing on are
shown (two virtual ranks per PE in this example), as well as the
operations the ranks perform, giving a detailed view of an applica-
tion’s behavior. For example, in Figure 4, it is possible to see that
at the time between 142 ms and 162 ms, PE 0 was idle since both
virtual ranks running on that PE (VP 0 and VP 1) were waiting
in an MPI_Barrier. Starting at about 167 ms, PE 0 is busy with
the execution of VP 0, while VP 1 is performing an MPI_Waitall
operation. This shows how the overdecomposition can help reduce
idle time.

In Figure 5, the operation of a migration operation in AMPI is
depicted. By looking the AMPI_Migrate event, a user can see which
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Figure 3: Previous visualization of AMPI in Projections, as presented in the original AMPI paper [6]. The x-axis depicts time,
while the y-axis shows the various processing elements (PE). Visible are the four processing elements, busy percentages (left
value below each PE label), idle times (in white), and busy times (in red). Not visible are virtual ranks (two per PE), rank
migrations, and which operation each rank is performing.
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Figure 4: New visualization of AMPI. In addition to the information shown in Figure 3, virtual ranks (VPs) are depicted (in-
cluding on which PE they are executing), as well as the operation performed by each rank.
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Figure 5: Visualizing migrations in AMPI. The MPI extension AMPI_Migrate() shows where each rank is migrated. For example,
VP 1is migrated from PE 0 to PE 1.
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virtual ranks were migrated, and to which PE they were migrated
to. In the example shown, VP 1 is migrated from PE 0 to PE 1.

Additional information that is provided by Projections, but not
shown in the figures, are statistics related to the number of different
events and the time spent for each event, among others.

3 APPLICATION CASE STUDIES

This section presents two case studies using two different MPI-
based applications in order to demonstrate how the visualizations
presented in the previous section can help users and developers of
MPI applications to optimize application performance and perfor-
mance portability.

In this section, we discuss the overall load imbalance of an ap-
plication using the average busy time and the percent imbalance
metric A [21], calculated over the busy time of all PEs using the
following equation:

1z (max(L) B

wo(D) 1) X 100% (1)

In the equation, L is a vector of the busy times of all PEs. If A = 0, the
application is perfectly balanced, while higher values of 1 indicate
increasing amounts of imbalance. The maximum value of A with 8
PEs and possible values of 0-100 is 700%.

To keep the presentation of the visualizations at a reasonable
size, we restrict them in this section to 8 PEs. Results are qualita-
tively similar to much higher numbers of PEs for both applications
presented here.

For the performance experiments, we execute the applications
on a system with an Intel Xeon E5-2680 v2 CPU (10-core, 2.8 GHz,
SMT disabled) and 64 GByte of DDR3 main memory. The software
environment consists of CentOS 7 with Linux kernel 2.6.32, gcc 4.8.2,
and Charm++/AMPI 6.8.0.

3.1 LULESH

LULESH! is an LLNL proxy application for unstructured Lagrangian-
Eulerian shock hydrodynamics [11, 12]. We use the MPI implemen-
tation of LULESH 2.0 in the experiments.

Figure 6 depicts the operation of LULESH with 8 PEs/ranks, no
overdecomposition and no load balancing. As can be seen from the
figure, the application is not imbalanced, with similar busy times
and load distribution among all PEs. The average busy percentage
is 78.6%, with an imbalance of A = 11.9%. Due to the low busy
percentage, this application may benefit from overdecomposition.
On the other hand, load balancing appears not to be profitable due
to the low imbalance.

Figure 7 shows the performance graph of LULESH with a 3.4x
overdecomposition (27 virtual ranks running on 8 PEs). As we
expected, the busy time of all PEs is increased substantially in this
scenario, reaching an average of 89.1%, while also improving the
load balance of the application slightly (A = 4.3%).

The impact of these improvements can be seen on the execution
time, which was reduced from 4.61 seconds in the baseline experi-
ment to 3.85 seconds with overdecomposition (~16% improvement).
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3.2 Particle-in-cell

The Particle-in-cell (PIC)? application is part of Intel’s Parallel Re-
search Kernels [22]. We used version 2.17 of the AMPI implementa-
tion of PIC.

Figure 8 shows the performance behavior of the PIC application
baseline, with 8 PEs/ranks and no load balancing. Several things
need to be noted here. First of all, the application is substantially im-
balanced. About half of the PEs have a significantly lower busy time
than the other half, leading to an overall imbalance of 1 = 22.5%.
Furthermore, since some of the PEs are idle for large amounts of
time, the overall busy time is only 75.6%.

The first natural step to fix this behavior is to balance the load
between the PEs. For this, we use AMPT’s load balancing feature,
specifically the RefineLB load balancer mechanism, which has
shown good load balancing results with a reasonable overhead [2].
The result of this experiment is presented in Figure 9. Since overde-
composition is required for load balancing, we selected the smallest
reasonable degree of overdecomposition (2x, 16 virtual ranks on
8 PEs) for this experiment. Note that in order to reduce the size
of the figures, we are not showing the individual virtual ranks in
Figures 9 and 10.

As can be seen in Figure 9, the RefineLB load balancer is able
to balance the load among the PEs successfully, resulting in an
overall imbalance of only A = 7.3%. However, although the work
is better distributed, the average busy time (77.4%) increases only
slightly compared to the baseline execution, despite the slightly
higher overdecomposition. Therefore, we can not expect signifi-
cant performance improvements compared to the baseline. This
is confirmed by the measurement of the execution time, which is
reduced only from 3.96 seconds in the baseline to 3.94 seconds with
load balancing.

The relatively high idle time of the load balanced version indi-
cates that this application can benefit from overdecomposition in
addition to load balancing. This intuition is verified with an experi-
ment that uses a 6x overdecomposition (48 virtual ranks on 8 PEs)
in addition to RefineLB. The results of this experiment is shown in
Figure 10. Here, we can see that busy time has increased drastically,
with an average of 92.4%. Furthermore, the application is also more
balanced (A = 1.7%). These improvements lead to a total execution
time of 3.26 seconds, about 18% less than in the baseline version of
PIC.

4 RELATED WORK

Several prior tools exist to help with visualizing and understanding
MPI application performance. These tools include Totalview [5],
Allinea Map and DDT [17], Vampir [14]/Vampirtrace [20], Score-
P [15], the HPCToolkit [3], Jumpshot [26], and Marmot [16]. Some of
these tools provide visualizations of an application’s MPI behavior
that are very similar to the visualizations discussed in this paper.
Many proposed techniques exist for monitoring communication
in MPI applications [24, 25, 27]. Tracing itself, as well as storing
and analyzing large trace files, is a significant challenge [27]. Since

!https://codesign.linl.gov/lulesh.php
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Figure 6: Baseline execution of LULESH with neither overdecomposition nor load balancing.
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Figure 7: Execution of LULESH with 3.4x overdecomposition (8 PEs, 27 virtual ranks) and no load balancing.

tracing is directly integrated in Charm++/AMP]I, the tracing over-
head can be substantially lower than in external tools that rely on
overriding particular MPI functions.

Other tools perform automatic detection of inefficiencies in cer-
tain MPI functions (such as send and receive) [23]. However, as
these tools are not aware of AMPI’s features that go beyond the

MPI standard, their applicability in the context of the AMPI runtime
is limited. Particularly, they can generally not be used for overde-
composition or migration, as they have no knowledge of virtual
ranks.

Many performance analysis tools for MPI are based on the Profil-
ing MPI (PMPI) standard [13, 19], which provides a coarse-grained
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Figure 10: Execution of PIC with 6x overdecomposition (8 PEs, 48 virtual ranks) and load balancing (RefineLB).
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way to override standard MPI functions with custom versions that
can be used for tracing and analysis. More recently, the MPI_T
interface [7, 8] was added to the MPI standard [19]. It allows more
fine-grained access to performance counters provided by the envi-
ronment. Currently, AMPI does not support PMPI or MPI_T, but
an implementation is planned for the near future. With such sup-
port, AMPI could expose information about overdecomposition and
migrations to other external tools.

5 CONCLUSIONS

Adapting MPI applications to the underlying hardware platform
and guaranteeing performance portability on different systems is a
challenging task. In this context, the Adaptive MPI (AMPI) runtime
provides several features that can help with this task, the two most
important of which are overdecomposition through virtualization
and load balancing through rank migration. Correct usage of these
features requires a deep understanding of the application perfor-
mance, as well as information about inefficient behavior displayed
by the application.

In this paper, we presented extensions to the Projections tool
to help with the performance analysis of applications running on
AMPIL We added tracing capabilities to AMPI, covering standard
MPI functions and AMPI’s extensions, and added their visualization
to Projections. Furthermore, we extended AMPI and Projections to
support visualization of virtual ranks as well as rank migrations
at runtime. With our extensions, Projections can be used to un-
derstand application behavior, point out possible inefficiencies and
their solutions, and evaluate improvements in load balance, overde-
composition, and performance. We applied this analysis to two
MPI-based applications, and achieved improvements of 16%-18%
with overdecomposition and/or load balancing,.

The changes discussed in this paper have been integrated into
the recently released Charm++/AMPI version, 6.8.0, and are avail-
able online3. Projections is available at the same location. For the
future, we intend to integrate support for PMPI and MPI_T into
AMPI in order to better support traditional performance analysis
tools. Furthermore, we want to improve how rank migrations are
displayed in Projections, and implement automatic suggestions for
performance improvements in AMPI and Projections.
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